.. _parameters_chapter: ================================================ :class:`Parameter` and :class:`Parameters` ================================================ This chapter describes :class:`Parameter` objects which is the key concept of lmfit. A :class:`Parameter` is the quantity to be optimized in all minimization problems, replacing the plain floating point number used in the optimization routines from :mod:`scipy.optimize`. A :class:`Parameter` has a value that can be varied in the fit, fixed, have upper and/or lower bounds. It can even have a value that is constrained by an algebraic expression of other Parameter values. Since :class:`Parameters` live outside the core optimization routines, they can be used in **all** optimization routines from :mod:`scipy.optimize`. By using :class:`Parameter` objects instead of plain variables, the objective function does not have to be modified to reflect every change of what is varied in the fit. This simplifies the writing of models, allowing general models that describe the phenomenon to be written, and gives the user more flexibility in using and testing variations of that model. Whereas a :class:`Parameter` expands on an individual floating point variable, the optimization methods need an ordered group of floating point variables. In the :mod:`scipy.optimize` routines this is required to be a 1-dimensional numpy ndarray. For lmfit, where each :class:`Parameter` has a name, this is replaced by a :class:`Parameters` class, which works as an ordered dictionary of :class:`Parameter` objects, with a few additional features and methods. That is, while the concept of a :class:`Parameter` is central to lmfit, one normally creates and interacts with a :class:`Parameters` instance that contains many :class:`Parameter` objects. The objective functions you write will take an instance of :class:`Parameters` as its first argument. The :class:`Parameter` class ======================================== .. class:: Parameter(name=None[, value=None[, vary=True[, min=None[, max=None[, expr=None]]]]]) create a Parameter object. :param name: parameter name :type name: ``None`` or string -- will be overwritten during fit if ``None``. :param value: the numerical value for the parameter :param vary: whether to vary the parameter or not. :type vary: boolean (``True``/``False``) [default ``True``] :param min: lower bound for value (``None`` = no lower bound). :param max: upper bound for value (``None`` = no upper bound). :param expr: mathematical expression to use to evaluate value during fit. :type expr: ``None`` or string Each of these inputs is turned into an attribute of the same name. After a fit, a Parameter for a fitted variable (that is with vary = ``True``) will have the :attr:`value` attribute holding the best-fit value. Depending on the success of the fit and fitting algorithm used, it may also have attributes :attr:`stderr` and :attr:`correl`. .. attribute:: stderr the estimated standard error for the best-fit value. .. attribute:: correl a dictionary of the correlation with the other fitted variables in the fit, of the form:: {'decay': 0.404, 'phase': -0.020, 'frequency': 0.102} See :ref:`bounds_chapter` for details on the math used to implement the bounds with :attr:`min` and :attr:`max`. The :attr:`expr` attribute can contain a mathematical expression that will be used to compute the value for the Parameter at each step in the fit. See :ref:`constraints_chapter` for more details and examples of this feature. .. index:: Removing a Constraint Expression .. method:: set(value=None[, vary=None[, min=None[, max=None[, expr=None]]]]) set or update a Parameters value or other attributes. :param name: parameter name :param value: the numerical value for the parameter :param vary: whether to vary the parameter or not. :param min: lower bound for value :param max: upper bound for value :param expr: mathematical expression to use to evaluate value during fit. Each argument of :meth:`set` has a default value of ``None``, and will be set only if the provided value is not ``None``. You can use this to update some Parameter attribute without affecting others, for example:: p1 = Parameter('a', value=2.0) p2 = Parameter('b', value=0.0) p1.set(min=0) p2.set(vary=False) to set a lower bound, or to set a Parameter as have a fixed value. Note that to use this approach to lift a lower or upper bound, doing:: p1.set(min=0) ..... # now lift the lower bound p1.set(min=None) # won't work! lower bound NOT changed won't work -- this will not change the current lower bound. Instead you'll have to use ``np.inf`` to remove a lower or upper bound:: # now lift the lower bound p1.set(min=-np.inf) # will work! Similarly, to clear an expression of a parameter, you need to pass an empty string, not ``None``. You also need to give a value and explicitly tell it to vary:: p3 = Parameter('c', expr='(a+b)/2') p3.set(expr=None) # won't work! expression NOT changed # remove constraint expression p3.set(value=1.0, vary=True, expr='') # will work! parameter now unconstrained The :class:`Parameters` class ======================================== .. class:: Parameters() create a Parameters object. This is little more than a fancy dictionary, with the restrictions that 1. keys must be valid Python symbol names (so that they can be used in expressions of mathematical constraints). This means the names must match ``[a-z_][a-z0-9_]*`` and cannot be a Python reserved word. 2. values must be valid :class:`Parameter` objects. Two methods are for provided for convenient initialization of a :class:`Parameters`, and one for extracting :class:`Parameter` values into a plain dictionary. .. method:: add(name[, value=None[, vary=True[, min=None[, max=None[, expr=None]]]]]) add a named parameter. This creates a :class:`Parameter` object associated with the key `name`, with optional arguments passed to :class:`Parameter`:: p = Parameters() p.add('myvar', value=1, vary=True) .. method:: add_many(self, paramlist) add a list of named parameters. Each entry must be a tuple with the following entries:: name, value, vary, min, max, expr This method is somewhat rigid and verbose (no default values), but can be useful when initially defining a parameter list so that it looks table-like:: p = Parameters() # (Name, Value, Vary, Min, Max, Expr) p.add_many(('amp1', 10, True, None, None, None), ('cen1', 1.2, True, 0.5, 2.0, None), ('wid1', 0.8, True, 0.1, None, None), ('amp2', 7.5, True, None, None, None), ('cen2', 1.9, True, 1.0, 3.0, None), ('wid2', None, False, None, None, '2*wid1/3')) .. method:: valuesdict(self) return an ordered dictionary of name:value pairs containing the :attr:`name` and :attr:`value` of a Parameter. This is distinct from the :class:`Parameters` itself, as the dictionary values are not :class:`Parameter` objects, just the :attr:`value`. This can be a very convenient way to get updated values in a objective function. .. method:: dumps(**kws): return a JSON string representation of the :class:`Parameter` object. This can be saved or used to re-create or re-set parameters, using the :meth:`loads` method. Optional keywords are sent :py:func:`json.dumps`. .. method:: dump(file, **kws): write a JSON representation of the :class:`Parameter` object to a file or file-like object in `file` -- really any object with a :meth:`write` method. Optional keywords are sent :py:func:`json.dumps`. .. method:: loads(sval, **kws): use a JSON string representation of the :class:`Parameter` object in `sval` to set all parameter settins. Optional keywords are sent :py:func:`json.loads`. .. method:: load(file, **kws): read and use a JSON string representation of the :class:`Parameter` object from a file or file-like object in `file` -- really any object with a :meth:`read` method. Optional keywords are sent :py:func:`json.loads`. Simple Example ================== Using :class:`Parameters`` and :func:`minimize` function (discussed in the next chapter) might look like this: .. literalinclude:: ../examples/doc_basic.py Here, the objective function explicitly unpacks each Parameter value. This can be simplified using the :class:`Parameters` :meth:`valuesdict` method, which would make the objective function ``fcn2min`` above look like:: def fcn2min(params, x, data): """ model decaying sine wave, subtract data""" v = params.valuesdict() model = v['amp'] * np.sin(x * v['omega'] + v['shift']) * np.exp(-x*x*v['decay']) return model - data The results are identical, and the difference is a stylistic choice.